Measurement of Elastic Modulus of Collagen Type I Single Fiber

نویسندگان

  • Pavel Dutov
  • Olga Antipova
  • Sameer Varma
  • Joseph P. R. O. Orgel
  • Jay D. Schieber
  • Etienne Dague
چکیده

Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Elastic Modulus of Steel Fiber Reinforced Concrete (SFRC) with Random Distribution of Aggregate and Fiber

The present paper offers a meso-scale numerical model to investigate the effects of random distribution of aggregate particles and steel fibers on the elastic modulus of Steel Fiber Reinforced Concrete (SFRC). Meso-scale model distinctively models coarse aggregate, cementitious mortar, and Interfacial Transition Zone (ITZ) between aggregate, mortar, and steel fibers with their respective materi...

متن کامل

Engineered collagen-PEO nanofibers and fabrics.

Type I collagen-PEO fibers and non-woven fiber networks were produced by the electrospinning of a weak acid solution of purified collagen at ambient temperature and pressure. As determined by high-resolution SEM and TEM. fiber morphology was influenced by solution viscosity, conductivity, and flow rate. Uniform fibers with a diameter range of 100-150 nm were produced from a 2-wt% solution of co...

متن کامل

Elastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays

Polymer-clay nano-composite materials, in which nano-meter thick layers of clay dispersed in polymer matrix, have generally higher mechanical properties than normal polymeric materials. A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical r...

متن کامل

Elastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays

Polymer-clay nano-composite materials, in which nano-meter thick layers of clay dispersed in polymer matrix, have generally higher mechanical properties than normal polymeric materials. A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical r...

متن کامل

Free Vibrations of Continuous Grading Fiber Orientation Beams on Variable Elastic Foundations

Free vibration characteristics of continuous grading fiber orientation (CGFO) beams resting on variable Winkler and two-parameter elastic foundations have been studied. The beam is under different boundary conditions and assumed to have arbitrary variations of fiber orientation in the thickness direction. The governing differential equations for beam vibration are being solved using Generalized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016